ОТЗЫВ

официального оппонента на диссертацию Глазовой Маргариты Владимировны «Молекулярные механизмы регуляции пролиферации и дифференцировки нейрональных стволовых клеток и роль этих клеток в регенерации нервной ткани» представленную на соискание ученой степени доктора биологических наук по специальности 03.01.04 – биохимия

1. Актуальность проведенного исследования.

Заболевания ЦНС, обусловленные генетически или приобретенные в ходе жизни часто имеют драматические последствия. У млекопитающих и у человека ткани мозга практически не восстанавливаются вследствие отсутствия регенерации. Однако у всех изученных видов позвоночных животных в ЦНС обнаружены нейральные стволовые клетки (НСК), обеспечивающие конститутивный нейрогенез, и покоящиеся (латентные) предшественники, активирующиеся при повреждении. Стволовые и прегениторные клетки находят у млекопитающих и человека, что свидетельствует о существовании в мозге механизмов для поддержания регенерации. В связи с этим НСК мозга интенсивно изучаются уже более двух десятилетий in vivo и in vitro. В последние годы на передний план вышла проблема расшифровки молекулярных механизмов нейрогенеза, что важно для фундаментальных представлений о нейральной дифференцировке и прикладных исследований по разработке стратегий лечения при патологии развития мозга и активации его регенерации у взрослого человека. Этим актуальным проблемам посвящена диссертационная работа М.В. Глазовой «Молекулярные механизмы регуляции пролиферации и дифференцировки нейрональных стволовых клеток и роль этих клеток в регенерации нервной ткани», и ее результаты важны для современной биологии и медицины.

2. Научная новизна исследования, теоретическая и практическая значимость полученных результатов, сформулированных в диссертации.

Диссертационная работа М.В. Глазовой направлена на изучение молекулярных механизмов регуляции пролиферации и дифференцировки нейронов из НСК и клеток предшественников и на выявление молекулярных путей активации регенерации нервной ткани за счет влияния экзогенных нейральных клеток, которые недостаточно изучены. Автором впервые установлено, что факторы и молекулярные механизмы апоптоза, который является важным и необходимым регулятором развития, могут непосредственно участвовать в процессах пролиферации и дифференцировки нервных клеток. Проведенное исследование вносит новые фундаментальные знания в расшифровку механизмов внутриклеточной молекулярной машины при развитии нейральных клеток, и их регулирующих эффектов при нейротрансплантации, влияющих на поведение животных. Результаты данной работы имеют теоретическую и практическую значимость благодаря раскрытию новых механизмов нейрогенеза, дифференцировки и паракринных эффектов.
НИК и их регуляции, которые являются основой для развития стратегий регенеративной медицины. Результаты исследования могут быть использованы в курсах лекций для студентов биологических и медицинских университетов.

Диссертационная работа М.В. Глазовой состоит из введения, обзора литературы, двух основных глав, заключения, выводов и списка литературы, включающего 525 ссылок. Текст диссертации изложен на 266 страницах и иллюстрирован 77 рисунками и 7 таблицами хорошего качества. Работа написана хорошим ясным языком и с интересом читается.

В обзоре литературы сформулирована основная задача и детально обсуждены основные данные об эндогенных сигнальных путях, опосредующих влияние белков p53, Bcl-2 и Pim1 на процессы дифференцировки. В завершающей части обзора литературы М.В. Глазова суммирует результаты работ по эффектам трансплантатов малодифференцированных нейральных клеток для компенсации нарушенных функций ЦНС.

Автор анализирует известные механизмы паракринного влияния нейральных клеток и подчеркивает значимость изучения их механизмов для использования при активации регенераторных процессов в ЦНС. Принципиальных замечаний к этому разделу нет, кроме того, что, к сожалению, в обзоре отсутствуют ссылки на отечественные исследования по проблеме нейротрансплантации и нейральных стволовых клеток, которыми занимаются в нашей стране уже более 40 лет.


Экспериментальные главы диссертации, а их две, четко структурированы. Каждый подраздел включает краткий обзор литературы, методы, описание выполненных экспериментов, результаты по каждому из них и общее заключение. Следует отметить, что в целом и схемы экспериментов и использованные методы абсолютно адекватны поставленным задачам, что отражает высокую квалификацию автора. Общее построение работы дает ясное понимание проведенных исследований и полученных результатов, которые дополнительно суммированы в наглядных обобщающих схемах.

В первой главе диссертации автор проверяет свою гипотезу о том, что белки апоптоза p53, Bcl-2 и Pim1 могут непосредственно участвовать в процессе нейрогенеза и регулировать его отдельные звенья. Современными методами, на многих экспериментальных моделях (мыши и крысы, нокаутные мыши, культуры НСК гиппокампа, органотипические клетки линии PC12, срезы гиппокампа, переживающие срезы гиппокампа, введение факторов in vivo в мозг, различные блокаторы данных белков) автор доказала, что белки p53, Bcl-2 и Pim1 участвуют в
регуляции пролиферации и дифференцировки нейронов, и что они связаны общими сигнальными механизмами.

Несмотря на то, что роль p53 достаточно хорошо изучена в соматических клетках и в дифференцировке ЭСК, исследований по НСК очень мало. Автор доказывает, что p53-зависимая нейрональная дифференцировка НСК и прогениторных клеток связана с подавлением пролиферации и ингибирированием транскрипционного фактора Sox2. Впервые показано, что нейрональная дифференцировка координируется ингибиторным влиянием p53 на пролиферацию и активирующим действием на cRaf/ERK/CREB сигнальный каскад. Впервые показано, что p53 играет важную роль в процессе формирования и функционирования катехоламинергических нейронов в ядрах гипоталамуса.

Сходную роль играет Bcl-2, вызывая подавление пролиферации. Соответственно, при его ингибирировании пролиферация НСК стимулируется, и в результате усиливается образование нейросфера, в клетках которых обнаруживается экспрессия фактора самоподдержания и плорипотентности Oct3/4. Pim-1 регулирует направленность нейронной дифференцировки и транскрипционную активность NFATc, что в целом свидетельствуют о модулирующей роли Pim-1 протеинкиназы в регуляции нейронной дифференцировки.

Результаты убедительно показывают, что нейрональная дифференцировка опосредованная p53, Bcl-2 и Pim1 связана с Raf/ERK/CREB внутриклеточным сигнальным каскадом. Полученные данные свидетельствуют, что белки p53, Bcl-2 и Pim1, играют важную роль в регуляции роста и/или функционирования катехоламинергических нейронов мозга.

К этой части диссертации у меня есть несколько замечаний и дискуссионных вопросов. Крысы Вистар обычно считаются породой. Клетки PC-12 - не указана плотность посадки клеток. НСК из новорожденных мышей - из каких отделов мозга выделяли клетки и как их культивировали (стр.79). Не везде указано, что за клетки брали для анализа, и нет протокола ИГХ и разведения антител (стр. 83-2.1.1.8 и 9 и 10). Не совсем понятно, каким образом проводили обсчет площади и длины отростков клеток (стр. 94. Рис. 21). Два рисунка с номером 23 (стр.96-97). Поскольку на переживающем срезе (стр.112) не видно, где в гиппокампе сосредоточены пролиферирующие клетки, то в качестве дискуссионного вопроса: я не могу исключить, что активируется пролиферация глии, а не НСК, да и на рис.29 видно повышение уровня экспрессии GFAP. Этот же вопрос относится и к рис. 39 б - включение р-НЗ возможно и в глию. Ошибка на рис.26 и рис. 44, где представлены одни и те же микрофото, с разными подписями p53 /- и Bcl-2 /-. Не на всех микрофото в первой главе есть масштабная шкала.

Вторая глава диссертации посвящена анализу механизмов паракринных эффектов малодифференцированных нейральных клеток или НСК трансплантированных в область повреждения спинного мозга крыс. В последние годы проведено множество исследований по
восстановлению спинного мозга на различных животных, несмотря на это, из-за разнообразия использованных моделей, типов трансплантированных клеток и различных в результатах (вплоть до противоположных) настоятельно требуется продолжение работ и их детальная разработка.

Сначала автор очень убедительно продемонстрировала, что в спинном мозгу мышей присутствуют латентные прогениторные клетки, проявляющие стволовые свойства в ответ на повреждение в модели органотипической культуры. Показано, что при длительном культивировании в средах для поддержания НСК, в органотипической культуре спинного мозга происходит спонтанное образование нейросфер (клеточных агрегатов, возникающих из НСК). Интересным и важным является тот факт, что за время культивирования клетки в нейросферах дедифференцируются до плюрипотентного статуса и экспрессируют Oct3/4. И напротив, в условиях дифференцировки они экспрессируют маркеры нейронов, специфичных для спинного мозга и астроцитов. В дальнейшем чрезвычайно важно изучить молекулярные механизмы эти процессов. Хочу особо отметить, что данная экспериментальная модель является интересным подходом для генерации стволовых клеток спинного мозга, необходимых для фундаментальных исследований и регенеративной медицины.

Далее автор задается вопросом «могут ли НСК, инъецированные в зону поражения, вносить вклад в регенерацию, секретируя цитокины и/или нейротрофины и тем самым стимулируя антиапоптозные и регенеративные механизмы в ткани реципиента?». В настоящее время, большое число исследователей занимается этими проблемами, и многие нейропротективные и иммуномодулирующие факторы выделяемые НСК уже охарактеризованы (De Feo D., et al. 2012). Тем не менее, каждый тип стволовых клеток и каждая модель имеют свои особенности. Поэтому интерес автора к эффектам трансплантации малодифференцированных нейральных клеток и, главное к изучению внутриклеточных сигнальных путей, опосредующих восстановление спинного мозга, вполне оправдан, поскольку молекулярные механизмы мало изучены.

В модели токсического повреждения спинного мозга у мышей, вызывающего болевой синдром, на различных моделях поведения животных автор продемонстрировала значительный позитивный эффект от трансплантации нейральных клеток дифференцированных из ЭСК. Более того, морфологический анализ срезов спинного мозга экспериментальных животных свидетельствовал о частичной регенерации. В работе убедительно показано, что в основе этих восстановительных процессов лежит секреция трансплантированными клетками BDNF и IL-6. Интересно, что экспрессия обоих факторов повышалась в клетках в процессе их дифференцировки из ЭСК. А после трансплантации клеток в травмированный спинной мозг, благодаря секреции BDNF и IL-6 повышался уровень цАМФ/РКА в окружающих клетках реципиента, что стимулировало регенерацию и восстановление нарушенных сенсомоторных функций. Исследуя механизмы восстановительных процессов, автор впервые показала, что повышение цАМФ
регулирует цитоскелетные белки синапсин 1 и coflin таким образом, что поддерживается аксональный рост. Одновременно с этим в ткани рецеппента в области трансплантации снижается уровень глутамата и Еро. Таким образом, впервые предложенные М.В. Глазовой механизмы нейропротекторного влияния НСК объясняют возможность терапевтического воздействия стволовых клеток и их перспективы для лечения повреждений спинного мозга, что определяет значимость полученных результатов для науки и практического применения.

Некоторые замечания по этой части исследования.
Очень интересна, показанная вами возможность получения нейросфер в органотипической культуре СМ. Сразу возник дискуссионный вопрос, почему трансплантировали нейроны из ДЗ плорипотентных клеток мыши, а не из нейросфер СМ, которые сами же получили? На рис. 58 мне видятся нейросферы, а не эмбриоидные тельца. Вы показали образование НСК в СМ, каково их возможное участие в регенерации при нейротрансплантации? Ваше мнение.

3. Степень обоснованности научных положений, выводов и рекомендаций, сформулированных в диссертации, личный вклад автора.
Научные положения диссертационной работы М.В. Глазовой в высокой степени обоснованы выбором и использованием широкого спектра экспериментальных моделей и современных методов исследования, использованием необходимых блокаторов, повторов и статистической обработкой результатов. Поляяны вынесенные на защиту и выводы диссертации сформулированы на основе полученных в работе результатов и отвечают поставленным задачам, а исследование в целом соответствует паспорту специальности. Автореферат полностью соответствует диссертации. Основные результаты диссертации представлены в 34 печатных работах, из них 15 статей индексированы в базах Web of Science и Scopus, исследования успешно представлялись автором на многих международных конференциях. Не вызывает сомнений личный вклад автора в планирование и выполнение экспериментов (включающих, как молекулярногенетические, биохимические и морфологические методы, так и трансплантацию клеток), в обработку материалов, анализ и написание статей. Хочу отметить, что высказанные мной по данной работе замечания не принципиальны, они, главным образом, носят дискуссионный характер и не умаляют значимость проведенного исследования.

Заключение. Диссертационная работа М.В. Глазовой «Молекулярные механизмы регуляции пролиферации и дифференцировки нейрональных стволовых клеток и роль этих клеток в регенерации нервной ткани» является законченным научным исследованием, в котором установлены новые принципиальные факты и сформулированы теоретические представления,
свидетельствующие о важных достижениях в области биохимии и нейробиологии. В исследовании выявлены новые механизмы регуляции дифференцировки нейрональных стволовых клеток и клеток предшественников и новые механизмы регенерации ЦНС, опосредованные экзогенными НСК. Диссертация М.В. Глазовой «Молекулярные механизмы регуляции пролиферации и дифференцировки нейрональных стволовых клеток и роль этих клеток в регенерации нервной ткани» полностью соответствует требованиям п. 9 «Положения о присуждении учёных степеней», утвержденного Постановлением правительства РФ от 24 сентября 2013 г. за №842 (с изменениями в редакции постановлений Правительства РФ №335 от 21.04.2016, №748 от 02.08.2016), а ее автор заслуживает присуждения учёной степени доктора биологических наук по специальности 03.01.04 – биохимия.

Главный научный сотрудник лаборатории проблем регенерации Федерального государственного бюджетного учреждения науки Института биологии развития им. Н.К. Колывова РАН. Москва, 119334, Вавилова 26.
Доктор биологических наук Александрова Мария Анатольевна
mariaaleks@inbox.ru

Подпись Александровой М.А. заверяю.
Ученый секретарь Федерального государственного бюджетного учреждения науки Института биологии развития им. Н.К. Колывова РАН
Кандидат биологических наук Хабарова М.Ю. 22 декабря 2017 г.